
Resonance states in scattering: some variational methods revisited

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 893

(http://iopscience.iop.org/0305-4470/12/6/020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 15:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 6, 1979. Printed in Great Britain 

Resonance states in scattering: some variational methods 
revisited 

A K Das, B Joos and P R Wallace 
Physics Department, McGill University, MontrBal, QuCbec H3A 2T8 Canada 

Received 20 April 1978, in final form 17 October 1978 

Abstract. We have studied two variational methods of scattering, namely the Kohn method 
and the Harris modification of it and applied them to resonance. As a case study, we have 
considered a coulombic acceptor impurity potential in a zero-gap semiconductor like 
mercury telluride in which, on physical grounds, an impurity resonance is expected and also 
the free particle Hamiltonian has a fairly complex structure due to the strong spin orbit 
coupling. 

The advantages and the limitations of the two methods are discussed with an emphasis 
on resonance. 

We have made a significant improvement in the algorithms of both methods over their 
previous applications in the literature and have emphasised the role of the non-linear 
parameter which in effect has been used as a variational parameter in the theory. 

1. Introduction 

We are currently studying resonance impurity states in zero-gap semiconductors. The 
details of this study will be reported elsewhere (Joos et a1 1978). We have employed 
methods of scattering theory, and in particular variational methods, to study the 
resonance states. We find that in the scattering literature although variational methods 
have occasionally been used to calculate resonance states, the pitfalls and possible 
improvements in the algorithm along the lines we have explored have not been properly 
discussed. We have decided to present our findings on two of the simplest variational 
methods in the hope that these will be of some interest and use to a wider section of 
physicists, many of whom, like the authors, may have felt the need for a simule yet 
reliable method to calculate such a delicate entity as a resonance state. 

As is well known, a number of variational methods have been proposed in scattering 
theory. These are described in most standard references. We refer the reader to 
Joachain (1975) and to Truhlar et a1 (1974). We have explored two of these methods: 
( a )  the Kohn method and ( b )  the Harris method which is a modification of the method 
of type (a ) .  We have chosen these two methods because we find that they are the 
simplest to use and yet their physical content is appealing. The other variational 
methods based on the Feshbach projection formalism appear to us to be computation- 
ally involved. In some recently proposed variational methods based on the Rayleigh- 
Ritz principle, the resonance width (to be discussed later) is not calculable, as has been 
pointed out by Bransden (1977). These theories are therefore defective. 
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The problem under study is the resonance state due to an acceptor coulombic 
impurity in a zero-gap semiconductor, described by the Hamiltonian 

H=Ho+ V ( r ) = ( 2 m o ) - * [ ( y 1 + ~ y ) p 2 - 2 y ( p .  J ) 2 ] +  V(r) (1) 

where mo is the free electron mass. J,, Jy  and J,  are 4 x 4 matrices corresponding to the 
angular momentum operator J ,  having the value J = :; y = i ( 2 y 2  + 3 ~ 3 ) .  y1, y2 and 7 3  
are the band parameters of the host material. The complex structure of Ho is due to the 
strong spin-orbit coupling and the symmetry induced degeneracy of the energy bands. 
The impurity potential V(r) is taken to be spherically symmetrical. The calculations 
have been done for a screened coulomb potential 

e 2  exp(-r/b) 
Vir) = - , 

EO r 

eo being the bulk dielectric constant. 
For a zero-gap semiconductor like mercury telluride (HgTe), the unperturbed 

Hamiltonian describes two degenerate bands-one conduction electron band and one 
hole band with small and large effective masses respectively (Gel'mont er al, 1976). An 
acceptor impurity has localised states in ordinary gap semiconductors. In a gap-less 
semiconductor, these states fall within the conduction band continuum and are expec- 
ted to give rise to resonance states. The purpose of this paper is to show that a reliable 
calculation of these resonance states can be done by the Kohn-Harris variational 
methods. 

2. Variational methods 

Let us briefly recall the main features of scattering theory for our purpose. For the 
Schrodinger equation (in atomic units) 

(-v2 v(r))+h = E k h  

with a spherically symmetric V(r), & ( r )  can be decomposed in partial waves 

and the radial equation for uk,,(r) reads 

( H  - E)ur(r)  = 0 

+ V(r). 
H Z - ~ + -  d2 I ( / +  1) 

dr r2 (3) 

A similar decomposition of equation (1) can be made, though the algebra is somewhat 
involved. This has been done by Gel'mont and D'yakonov (1972) and by Baldereschi 
and Lipari (1973). Due to the spin orbit coupling in the Hamiltonian (l), the lowest 
radial functions are now uo(r) and u2(r) satisfying the coupled equations 
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where we have used for convenience the effective Rydberg units 
2 R~ = e4mo/2h2eiyl a. = h eo-yl/e2mo 

eo being the bulk dielectric constant of the medium. The band parameters have been 
condensed into p = ( 6 y 3 + 4 y 2 ) / 5 y 1 .  

The scattering solution of (3) has the boundary conditions that 

u1(0)=0 and ul(r)+sinkr+Alcoskr ,  r+oO. ( 5 )  

ul(r) is asymptotically characterised by the phase shift SI, or more conveniently by 
A i  = tan(& - p x / 2 ) .  The corresponding boundary conditions for our problem of zero- 
gap semiconductors will be 

and 
+ for electron [*:I' -for hole [ + (sin kr + A cos kr) 

r + m ,  

where A is the tangent of the 1 = 0 phase shift and part of the 1 = 2 phase shift. The free 
particle kinematics are given by 

E , ( k ) = ( l  * p ) k 2 .  

When a phase shift passes and increases rapidly through $T (modulo T), a resonance in 
scattering is said to occur. The scattering cross section (+ having the familiar form 

shows a peak due to a maximum in the lth partial wave contribution-in our case from 
uo and u2.  The scattering state corresponding to this energy has a quasi-localised 
behaviour. The state has, of course, a finite lifetime and hence a finite width r given by 

The positivity of r (r > O), a consequence of causality, requires that SI  should increase 
through ~ / 2  at a true resonance. For a well-defined resonance we require r <<ER. 

A variational method can be set up to solve for the scattering states of equation (3) as 
in a bound state problem but with the important difference that uI(r) does not vanish 
asymptotically but behaves as equation ( 5 ) .  It can be shown that the integral 

(8) 
where ( x )  = I," x dr yields equation (3) with the boundary conditions (3, through its first 
order variation 6J = 0. 

J = ( p / H  -Elu) -kA 

Such a variational method usually makes use of trial functions of the form 

ut = 4 +S+AC 
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v i  is a basis set of localised functions with the cl 's as the linear variational parameters, 
and asymptotically 

S(r) -sin kr; C (r) - cos kr S(0) = C(0)  = 0. 

We shall first use the Kohn variational method and then the Harris method which is an 
interesting modification of the former. Since these methods are well known, we shall 
merely quote the essential steps. 

2.1. The Kohn method 

In this method the variational integral J is made stationary with respect to all the c,'s 
and A. aJ/ac, = 0 leads to 

( v , I H - E ~ ~ ~ , ) C ~  = - ( d H - E ( S f A C ) ,  i =  1 , .  . . ,  N. (10) 
I 

The c,'s can be written as 

It is convenient to write 4 as 

4=+s+A4c 
where 

and after some algebra, J ( A )  can be expressed as 

J ( A )  =Moo+2MloA +M11A2 

where 

M ~ , = ( S ( H - E ~ ~ ~ + S ) ,  Mlo=(CjH-E/4s+S) ,  M11=(CIH-E(4c+C).  (12) 

Next 

aJ/aA = o 
leads to 

AKohn = -MlO/M11+ (13) 

In the Kohn method the integral I = ( u l H - E l u )  is not put equal to zero. 
Consequently a second order correction to h~~~~ can be made to give 

[AIKohn = A K o h n - k - ' I ( A K o h n ) .  (14) 

In fact the smallness of I in equation (14) can serve as a guideline for a reliable 
calculation which requires that J be stationary and I = 0. 

The method can be applied to equation (4) with the boundary conditions (6 )  by 
considering the variational integral 

J = ( u o ,  uzlH-EIluo, uz)-2(1  * w ) k A .  (15) 

In arriving at equation (12) we utilised the symmetric property of the Hamiltonian 
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Because of the spin-orbit coupling term in the Hamiltonian of our problem this 
symmetry property no longer holds. Consequently all the relevant expressions will 
appear in symmetrised form. Equation (lo),  for instance, will now be 

= -[(xl/H-E1/S+AC)+(S+ACI_H-EII~,)], i =  1 , .  . . ,2N. (16) 

where Xz1-1 = TI(:), XZ, = ql (? ) ,  S = S(*i) and _C = CL;), N being the size of the set of 
77,’s and H-E1 the radial Hamiltonian. It should be noted that because of the 
two-component (spinor) nature of uo and uz,  equation (16) is a 2N 0 2N matrix 
equation. 

The Kohn method is simple and physically appealing. Unfortunately this method 
and the methods of its type have to contend with the appearance of some unphysical 
singularities, first noted by Schwartz (1961). Unlike the case of bound states, the 
scattering energy E scans a wide range in the process of calculation and E is likely to 
come close to an eigenvalue of H within the space spanned by the 77,’s. The unphysical 
singularities are related to the existence of these eigenvalues. We refer to Truhlar et a1 
(1974) for a satisfactory and elaborate discussion of these singularities. Briefly, when E 
is equal to one of these eigenvalues, Mlo and ML1 develop poles of odd order. Because 
of these odd ordered poles, each of them passes through every value in the range -cc to 
00 in the vicinity of these eigenvalues. (This situation would not arise in a bound state 
problem where E is bounded from above.) Depending on the order in which Mlo and 
M I  reach zero, A will develop spurious singularities manifesting a resonance-like or an 
antiresonance-like behaviour. In the limit where the basis set is large enough to 
represent the exact solution, if the singularity is spurious, the zeroes of Mlo and M 1  
coincide and the singularity disappears (except in the case of a real resonance). Besides, 
the existence of the eigenvalues poses another problem: the left hand side matrix of 
equation (10) will have a vanishing determinant and hence the matrix cannot be 
inverted. Therefore the variational calculation cannot be executed. 

To avoid these difficulties, a non-linear parameter-in contrast to the linear 
parameters c,-is introduced in the basis set {q,}. In our calculation ql has been taken as 
ql = (r/a)’ exp(-r/a), i = 1, . . . , N, where a is the non-linear parameter. This 
parameter is then scanned to avoid the singularities. Specifically the algorithm of the 
Kohn method now proceeds as follows: for a given value of k, A(k) is calculated for 
several values of the non-linear parameter a, the singularities being avoided each time. 
A schematic plot of A (k) versus a is shown in figure 1. The singularities lie between the 

curves. as is selected from the smoothest plateau. The process is repeated for several 
values of k, resulting in a plot of a ~ ( k ) .  This cus(k) is then fed back into the basis set. 
Finally A (k) is calculated for various values of k. In the end, the singularities and the 
eigenvalues do limit the Kohn method. The number of eigenvalues increases as the 
basis set is increased and the matrix inversion becomes more and more difficult. 
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k = 2  (o:).' 
-x/ c 0 0.5 1.0 1.5 

Figure 1. Typical plot of phase shift 6 versus a, the non-linear parameter. k, ' s  lie about 
midway between the singularities. 

2.2. The Harris method 

Harris has introduced a modification of the Kohn method which avoids the spurious 
singularities and at the same time exploits the troublesome eigenvalues to advantage. 
We refer to Nesbet (1968) for a detailed account of this method. Harris noted that 
equation (10) can profitably be employed at the singular points where the matrix 
inversion fails, i.e. when E =E,, one of the eigenvtdues. let us consider 4, given by 

From equation (10) we obtain 

When E =E,, the left hand side vanishes, giving rise to the difficulty of the matrix 
inversion in equation (10). But it can now be avoided if at the same time we require that 

(18) (4, IH -EIS + AC) = 0 

which immediately yields the phase shift 

It is interesting to note that  AH^^^^^ is, as Nesbet has shown, actually the analytical limit of 
AKohn (without the second order correction). The condition (18) therefore makes J 
stationary not only with respect to the inner wavefunction but with respect to A as well. 

The algorithm of the Harris method is then as follows: one calculates for a given a, 
the same non-linear parameter as in the Kohn method, a set of E,'s from the matrix 
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eigenvalue equation 

For each a, N values of A are obtained corresponding to different kw’s.  This procedure 
is repeated for a range of CY, resulting in N curves for A versus k. It is now seen that as 
the basis set N is increased a number of curves coalesce into one which does not move as 
N is increased further. This then implies that for a fixed k,  a plot of A versus a, as in 
figure 1, will have a plateau and stationary solutions with respect to a will obtain. It is to 
be noted that in our problem each of the AHarris versus k curves shows a resonance or 
rather a pseudo-resonance. When the convergence of the curves with respect to the 
basis set is reached we can conclude that a real resonance has been calculated. A plot of 
such an optimum resonance curve for a screened coulomb potential is shown in figure 2. 
The quantity of direct physical interest in our problem is the resonance energy ER. As 
stated in the Introduction, we find that the convergence of E, is somewhat faster than 
that of the phase shift S. A plot of ER versus a in figure 3 is presented and commented 
on in § 3. 

1 , k k ~ J ) ’  1 
1-0 1.2 1.L 16 

a 

Figure 2. Phase shift S as a function of k near a resonance (Harris method). 

3. Results for a screened coulomb potential 

With representative parameters for a typical zero-gap semiconductor, we take 

V ( r )  = ( 2 / r )  exp(-r/5). 

The band parameters are CL = 1.1 with 

Figure 2 is a plot of the phase shift versus energy calculated in the Harris method for a 
basis set of size N = 9. The corresponding Kohn plot is close to it, giving approximately 
the same value of the resonance energy. 
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3.1. Resonance energy 

Figure 3 is a plot of k R  versus a calculated in the Harris method for different values of 
N .  As the figure indicates, convergence is reached in the range 0.3 S ka S 0.9 for 
N = 8, 9.  When N is increased further, the plateau merely broadens horizontally. In 
fact we have extended the calculation to a more complex screened coloumb potential 
and have observed a similar trend (Joos et a1 1978). The non-linear parameter a is 
intuitively related to the range of the potential. The reliable range of this parameter can 
conceivably be estimated at a theoretical level though we have not yet been able to 
explore it. 

3.2. Resonance width 
The resonance state has a finite life time because of its interaction with the continuum, 
and hence a finite width (cf the Breit-Wigner formula). The width indicates the strength 
of the resonance. In our calculation the width r of equation (7) has been obtained from 
the slope of the S versus k curve at the resonance point. The widths in both the methods 
are found to be much smaller than ER, indicating a sharp resonance. This is indeed in 
accord with the expectations on physical grounds as discussed in the Introduction. 

4. Discussion 

In this section we shall discuss two aspects of the calculation-the special role of the 
non-linear parameter and a comparative evaluation of the two variational methods. 

4.1. Optimum use of a 

An important highlight of our calculation is the optimum use of the non-linear 
parameter a which, in effect, has been used as a variational parameter. It appears that 
in the previous calculations with the Kohn method only a few values of a are scanned, 
mainly to keep away from the spurious singularities. In the few papers dealing with the 
Harris method we do not find an attempt to ensure that ah /& should also vanish, along 
with two other stationary conditions. We have made specific attempts to ensure this in 
both methods. Recalling equation (8) for J and equation (14) for [A]Kohn we see that 

a J / d a  = 0 .$ a [ A ] K o h " / a a  = 0. (21) 

In our calculation we have ensured that a [ h ] K o h n / a a  should vanish. J is thus made 
stationary with respect to all the parameters, linear and non-linear. It can be argued 
that since in the Kohn method, with several values of (Y one normally obtains a plateau, 
a Kohn variational calculation would imply the vanishing of a A / d a ,  and aJ/aa = 0 would 
result. In  previous variational calculations, however, only a few values of CY have 
usually been considered, which would not result in a satisfactory plateau, and hence 
aJ/dcu cannot be regarded as vanishing with certainty. At the same time it should be 
emphasised that aJ/& = 0 by itself does not necessarily ensure the full stationariness of 
J and hence a rapid convergence. Though aJ/aa is vanishing for each plateau, the 
integral I may not necessarily be zero for each of them. We have searched and picked 
up that plateau for which I = 0. We believe that this full optimum use of a is a 
significant improvement over previous calculations of this type. It may be noted that 
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through optimising J with respect to a, the variational estimates for the phase shift and 
the wavefunctions satisfy the virial theorem of scattering theory (Demkov 1963, 
Heatton and Moiseiwitch 1971, McWhirter and Moiseiwitch 1974). 

In the Harris method such an optimisation is less satisfactory. The reason is that, as 
we have noted, the Harris value is the analytical continuation of the Kohn phase shift. 
One can therefore obtain a Harris plateau. But I as such cannot be estimated in the 
Harris method. The optimisation procedure is thereby limited. 

4.2. Comparison of the two methods 

We shall finally make a few remarks on the relative merits of the two variational 
methods, with regard to their efficiency and accuracy in calculating resonance as well as 
non-resonance scattering. If the phase shift for a given energy is required, the Kohn 
method is more advantageous and satisfactory. In this method one has an explicit 
knowledge of I which should go to zero for an exact solution. The size of I therefore 
serves as an indication of the convergence being reached. The phase shift in the Kohn 
method can be variationally corrected and improved. Such an improvement cannot be 
done in the Harris method, where the only test of convergence is the convergence of A 
to a fixed value as the basis set is increased toward completeness. There is a modified 
version of the Harris method due to Harris and Michels (1971) which can be variation- 
ally corrected. But in the latter method one has to calculate the free-free integrals, i.e. 
the integrals involving only the asymptotic wavefunctions. These integrals are often the 
most difficult to evaluate. A distinct advantage of the Harris method is that the 
free-free integrals need not be evaluated. The bulk of computation is accordingly 
greatly reduced. Furthermore since an explicit knowledge of (b is not needed in the 
Harris method, the difficulties with the singularities are avoided and, consequently, if 
the phase shift for a wide range of energy is required-as in our problem-the Harris 
method is expected to give good results with less computational labour. 

There are also other reasons to believe that the Harris method is more advantageous 
specifically for the calculation of resonances. Let us consider two more computational 
difficulties with the Kohn method: 

( a )  The stationary value as of the non-linear parameter varies with the scattering 
energy. We have considered several plots like the one in figure 1, and have drawn a 
curve for as = as(k). For reasons of computational cost we did not consider a large 
number of k-values. The curve was interpolated across the resonance k-value in a 
simpler manner, guaranteeing however that at a resonance the a s ( k )  curve does not 
have a pronounced deviation from its projected path. 

( b )  One can improve the a S ( k )  curve by taking more values of k ,  though at a computing 
cost. However, this by itself may not necessarily improve the final result. The reason is 
that a calculation with more k-values will amount to scanning extensively off resonance 
where the convergence is not very good, though it is good near a resonance. This can be 
attributed to the simplified nature of the trial functions used. For instance, off 
resonance the asymptotic part of the wavefunction may be more complicated, especially 
for a coulombic potential. These difficulties are either not encountered or are bypassed 
in the Harris method. The phase shift is now computed at E,’s, the eigenvalues 
obtained from equation (20) corresponding to the localised set vi. Since a resonance is 
associated with a quasi-localised state embedded in the continuum, we expect on 
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N . 5  6 7 8 9 

1 1 1 

physical grounds one of the E,’s to converge toward the resonance energy ER. With a 
judicious choice of the localised set one can therefore hope to achieve a reasonably 
rapid convergence of E,  to ER. 

In the Harris method we do not look for a stationary a~(k) as such. As already 
stated, we scan over a reasonable interval of a. This leads directly to a set of 2N 
potential resonance curves, N being the size of the basis set. The convergence of these 
curves as N is increased determines the reliable ER. The somewhat delicate problem 
with the a s ( k )  curve is thus avoided. 

In view of the discussion by Truhlar et a1 (19741, we have decided to limit our 
comparative study of the two methods mainly to resonance. We would like to make a 
remark on the use of the linear phase shift parameter A I  in both the methods. At 
resonance increases through &r (modulo T )  and A I  diverges. Since A I  is a linear 
parameter in the method we have described, the study of resonance is a delicate 
problem. This difficulty with A +CO at resonance can of course be avoided with a more 
realistic choice of the asymptotic wavefunction, e.g. of the form sin(kr - S I ) .  S I  is now a 
non-linear parameter in the theory. With such a trial function, however, the Kohn 
method may be virtually intractable. In the Harris method the phase shift can be 
calculated though with considerable labour. 

We shall conclude with an observation on the minimum principle, if any, in our 
calculation. Unlike the bound state case, the variational calculation in scattering 
usually lacks a criterion for the minimum of the quantity being calculated, namely the 
phase shift. Establishing such a minimum principle for a general class of potentials 
seems to be a difficult task. We have however noted an interesting result in our 
calculation. The resonance energy is found to converge faster than the phase shift as N 
is increased to N = 8 ,  9 (figure 3). The convergence of the energy eigenvalue is 

somewhat reminiscent of the bound state problem. It is perhaps a fortunate 
consequence of our calculation being primarily directed at a resonance state for which 
the localised part of the wavefunction plays a more decisive role. The form of the wave- 
function is thus simplified and the trial function becomes more accurate. However, the 
particular choice of the Hamiltonian (1) for a gap-less semiconductor and the optimum 
use of the non-linear parameter may also have contributed to the convergence. 



Resonance states in scattering 903 

Acknowledgments 

This research has been financed by a National Research Council grant. BJ acknow- 
ledges a Centennial scholarship. 

References 

Baldereschi A and Lipari N D 1973 Phys. Rev. B 8 2697 
Brandsen B H 1977 Phys. Lett 61A 145 
Demkov Yu N 1963 Variational principles in the Theory of Collisions (Oxford: Pergamon) ch IV 
Gel’mont B L and D’yakonov M I 1972 Sov. Phys.-JETP 35 377 
Gel’mont B L, Ivanov-Omskii V I and Tsidil’kovskii I M 1976 Sot;. Phys.-Usp. 19 879 
Harris F E and Michels H H 1971 Meth. Computafional Phys. 10 144 
Heatton M and Moiseiwitch B L 1971 J. Phys. B: Atom. Molec. Phys. 4 332 
Joachain C J 1975 Collision Theory (Amsterdam: North-Holland) 
loos B, Das A K and Wallace P R 1978 Phys. Rev. B 13 
Luttinger J M 1956 Phys. Rev. 102 1030 
McWhirter J D G and Moiseiwitch B L 1974 J. Phys. B: Atom. Molec. Phys. 7 229 
Nesbet R K 1968 Phys. Rev. 175 134 
Schwartz C 1961 A n n .  Phys., N Y  16 36 
Truhlar D G, Abdallah, J J r  and Smith R L 1974 A d v .  Chem. Phys. (ed I Prigogine and S A Rice) XXV 21 1 


